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Micromotion of ions in Paul traps has several adverse effects, including alterations of
atomic transition line shapes, significant second-order Doppler shifts in high-accuracy
studies, and limited confinement time in the absence of cooling.   The ac electric field that
causes the micromotion may also induce significant Stark shifts in atomic transitions.  We
describe three methods of detecting micromotion.  The first relies on the change of the
average ion position as the trap potentials are changed.  The second monitors the amplitude
of the sidebands of a narrow atomic transition, caused by the first-order Doppler shift due
to the micromotion.  The last technique detects the Doppler shift induced modulation of the
fluorescence rate of a broad atomic transition.  We discuss the detection sensitivity of each
method to Doppler and Stark shifts, and show experimental results using the last
technique.

1. Introduction

Because of their low velocities, cooled and confined ions can provide the basis for
accurate and stable frequency standards and atomic clocks.  For example, for 199Hg+ ions trapped
in an rf Paul trap and laser-cooled to the Doppler limit, the magnitude of the fractional second-
order Doppler (time dilation) shift of transition frequencies can be as low as 2 × 10-18 [1].
However, due to the ion motion synchronous with the trap ac field (the “micromotion”), this shift
can be orders of magnitude larger if the average ion position is not at the nodal position of the
trap’s ac electric field.  To realize the high accuracy of a trapped-ion frequency standard, the ion
micromotion must be minimized.  In this paper, we discuss ion micromotion in a Paul trap and its
associated effects on stored ions and their transition frequencies.  We also describe methods to
detect and minimize micromotion, and present experimental data using one of these methods.
2. Micromotion in a Paul Trap

For brevity, we characterize motion of a single ion in one type of Paul trap that may be
particularly useful for high-accuracy spectroscopy.  The results in this section can be generalized
to other types of Paul traps.  If several ions are stored in the same trap, the equations of motion
must be modified to include modes of collective motion.  However, the conclusions about
micromotion and its effects are still valid.

Figure 1 shows a schematic diagram of a linear Paul trap [1, 2, 3, 4, 5, 6, 7].   Electrodes 1
and 3 are held at ground potential, while the potential of electrodes 2 and 4 is V0 cos(Ω t).
Typically, for atomic ions, Ω/2π  > 100 kHz and |V0| < 1000 V.  Near the axis of the trap the
potential due to the electrodes is
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R is the perpendicular distance from the trap axis to the trap electrodes (shown in Fig. 1(b)),
and ′ ≅R R ( ′ =R R if the trap electrodes are hyperbolic cylinders of infinite length) [2, 3].  The
gradient of the corresponding electric field confines the ion radially in a harmonic pseudopotential
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[8].  To confine the ion axially, two endcaps held at potential U0 create a static potential
U(x, y, z).  Near the center of the trap, U(x, y, z) can be approximated by
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where κ (< 1) is a geometrical factor and Z0 is shown in Fig. 1(a).  Here, for simplicity, we have
neglected the (small) component of alternating electric field along the z-axis caused by the
electrode configuration shown in Fig. 1.  Linear trap electrode geometries which eliminate this
field are discussed in Refs. 1 and 2 (see also Sec. 5).   From Eqs. (1) and (2), the total electric
field is
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The equations of motion for a single ion of mass m and charge Q in the above field are given by
the Mathieu equation
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where 
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u u x u y u zx y z= + +� � �  is the position of the ion using the coordinate system shown in

Fig. 1(b), and from Eq. (3),
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For convenience, we also define the unit vectors
� �, � �, � �.u x u y u zx y z= = =and (7)

In the typical case where |qi| « 1 and |ai| « 1, the first-order solution to Eq. (4) is [9]
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and ϕSi is a phase determined by the initial conditions of the ion position and velocity.  The
“secular” motion of the ion is the harmonic oscillation at frequency ωi and amplitude u1i.  The
motion corresponding to the cos(Ω t) term is driven by the applied ac field, and is called
“micromotion.”

From Eq. (8), the kinetic energy of the ion averaged over a period of the secular motion is
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where the first term in the last two expressions is the kinetic energy due to the secular motion, and
the second term is the kinetic energy due to the micromotion.  For motion parallel to the trap axis,
qz

2 = 0, so the average kinetic energy is due entirely to secular motion.  Because the secular
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motion is typically thermal, incoherent motion, the kinetic energy due to motion in the z-direction
is
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where kB is the Boltzmann constant, and the kinetic energy is characterized by a temperature Tz.
Typically, in the radial direction, |ai| « qi

2 (i = x, y).   The energy of the radial secular motion is
then approximately equal to that of the radial micromotion.  In this case,

E k T muK i B i i i= ≅ 1
2 1

2 2ω   (i = x, y). (12)

The energy of the secular motion can be reduced by cooling [10].  As the amplitude u1i of
the secular motion is reduced, the micromotion and its corresponding energy are also reduced
according to Eqs. (8) and (10).  The Doppler-cooling limit of the ion temperature due to secular
motion in one direction is [10]
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where γ is the linewidth of the cooling transition.  As an example, for the 199Hg+  5d106s 2S1/2 →
5d106p 2P1/2 transition used for laser cooling, γ = 2π ⋅ 70 MHz.  The Doppler-limited cooling
temperature is TD ≅ 1.7 mK.

If, in addition to the trap fields described above, the ion is also subjected to a uniform
static electric field 
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To lowest order in ai and qi, the solution to Eq. (14) is
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The field
&
EDC  displaces the average position of the ion to 

&
u u x u y u zx y z0 0 0 0= + +� � � , but does not

directly change u1i.  The ac electric field at position 
&
u0  causes micromotion of amplitude ½ u0i qi

along �ui .   We will call this “excess micromotion,” to distinguish it from the unavoidable
micromotion that occurs when the secular motion carries the ion back and forth through the nodal
line of the ac field.  Unlike secular motion, excess micromotion cannot be significantly reduced by
cooling methods because it is driven motion.

Excess micromotion can also be caused by a phase difference ϕac  between the ac
potentials applied to electrodes 2 and 4.  For example, in the trap shown in Fig. 1, the potential
applied to the electrode 4 may be +V0 cos(Ωt + ½ ϕac), and to electrode 2, V0 cos(Ωt - ½ ϕac).  If
ϕac « 1, these potentials are approximately equal to V0 cos(Ωt) - ½ V0 ϕac sin(Ωt) and V0 cos(Ωt)
+ ½ V0 ϕac sin(Ωt), respectively.  Near the trap axis, the additional field due to the
± ½ V0 ϕac sin(Ωt) terms is approximately that of two parallel plates held at potentials
± ½ V0 ϕac sin(Ωt) and separated by 2 R/α [11].  The value of α depends on the geometry of the
trap.   We use the method of van Wijngaarden and Drake [12] to calculate the dipole moment for
our trap (R = 0.81 mm, electrode radius r = 0.38 mm), and find α = 0.75.  If we include a uniform
static field, the total electric field near the center of the trap is
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With the additional oscillating electric field due to ϕac, the equations of motion in the y- and z-
directions remain unchanged from Eq. (15).  However, if we solve the equation of motion in the
x-direction to lowest order in ax, qx and ϕac,  and use R′ = R in Eq. (6), then
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Equation (18) shows that unless ϕac = 0, the excess micromotion in the x-direction will not vanish
for any average ion position 

&
u0 .

From Eqs. (15), (16), and (18), the average kinetic energy due to motion along �ui  is
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In order to compare the size of the last two terms relative to the first, it is useful to write them as
½ kB Tµ i, where Tµ i is the equivalent (pseudo) temperature for the kinetic energy due to the
excess micromotion along �ui .  A uniform static field along the axial direction does not change
EKz, since it only shifts the minimum of the static potential U(x, y, z).   For a 199Hg+ ion in a trap
with |ai| « qi

2 « 1 and ωx = 2π ⋅ 100 kHz, a 1 V ⋅ mm-1 uniform field along the x-direction increases
Tµx by 1.4 × 104 K.   For R = 1.0 mm and α = 0.75, a phase shift of ϕac = 1° between the trap
electrode potentials increases Tµx by 0.41 K.  These effective temperatures are orders of
magnitude greater than the 1.7 mK temperature associated with the secular motion at the Doppler
cooling limit.

These phase shifts and electric fields may be reasonably expected.  A phase shift can be
caused by asymmetries in the electrical impedances of the electrodes.  For example, a phase shift
will occur if the leads to the trap electrodes have different inductances due to different lengths or
geometrical arrangements.  A uniform electric field of magnitude 1 V ⋅ mm-1 may develop in a
millimeter-sized trap in several ways.  Often, an effusive oven located on one side of the trap is
used with an electron-emitting filament to produce ions inside the trap.  In this case, the trap
electrodes may become unevenly coated with the oven contents, which could cause contact
potentials of a fraction of a volt.  Additionally, the trap electrodes may become unevenly charged
when this coating or other dielectric or oxide layer is charged by the emitted electrons. Finally,
patch effects due to different crystal planes at the surface of the electrodes also can produce
surface potential variations of roughly 100 mV.   Although the magnitude of stray fields caused by
patch effects and charging of the trap electrodes can be reduced by heating the trap electrodes in
situ [13], no technique can eliminate these fields.

Below, we will give general expressions for the effects of excess micromotion and several
methods to detect it.  To provide examples, we consider the Doppler shifts and the ac Stark shift
of the 199Hg+ 5d106s 2S1/2 → 5d96s2 2D5/2 electric quadrupole transition at 282 nm, and the
sensitivity of the various methods used to detect these shifts.  Because effects from excess
micromotion are negligible in the limit that |ai| » qi

2, in the following sections all examples assume
that |ai| « qi

2 « 1 (i = x, y). We take the physical trap parameters as ′R ≈ R = 1.0 mm, α = 0.75,
Ω = 2π ⋅ 10 MHz, ωx ≈ ωy = 2π ⋅ 1.0 MHz, and qx ≈ qy = 0.28.
3. Effects of Excess Ion Micromotion

The first-order Doppler shift due to excess micromotion can significantly alter the
excitation spectrum of an atomic transition.  The spectrum can even change so that a laser heats
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the ions at frequencies where laser cooling is normally expected [14, 15].  Assume that the electric
field of the laser used to excite the ion has amplitude

&
E0 , frequency ωlaser, phase ϕlaser, and wave

vector
&
k .   From Eqs. (15) and (18), in the rest frame of an ion undergoing excess micromotion,

this laser field becomes

[ ]{ }
( )[ ]{ }

& & & &

& & & &

E t E i k u i t

E i k u u i t

laser laser

laser laser

( ) Re exp

Re exp ,

= ⋅ − +

≅ ⋅ + ′ − +

0

0 0

ω ϕ

ω ϕ
(20)

where 
& ′u is the amplitude of the excess micromotion.  To isolate the effect of excess

micromotion, we have assumed that |u0i| » |u1i| and |R α ϕac| » |u1i|.  From Eqs. (15) and (18),
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With the Bessel function expansion
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Eq. (20) can be written as
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We define℘
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E  as the amplitude of the interaction matrix element between atomic levels e  and

g  coupled by an electric field { }Re
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E ei t iω ϕ+ .  Here, ω is the field frequency and ϕ is the field

phase.  If the field of Eq. (26) interacts with the atom in the low intensity limit

℘
&

!

E0
« γ , (27)

then the steady-state solution to the optical Bloch equation for the upper level population Pe is
[14, 15]
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where ωatom is the resonance frequency of the atomic transition.  Figure 2(a) shows the excitation
spectrum calculated from Eq. (28) for various magnitudes of micromotion, for Ω « γ and in the
low intensity limit.  As β increases from 0, the frequency modulation from the excess micromotion
first broadens the transition.  This decreases the rate at which a laser can cool the ion.  For larger
values of β, the line shape can develop structure that causes the laser to heat, rather than cool the
ion, even when ωlaser - ωatom < 0.  Figure 2(b) shows the effect of micromotion when Ω » γ.  As β
increases, the excitation spectrum develops sidebands at ± n Ω (n = 1, 2, 3, …), and the strength
of the carrier transition decreases.  Heating now occurs when the laser frequency is tuned near,
but above the center frequency of any of the sidebands.

Ion motion also produces a second-order Doppler (time-dilation) shift of atomic transition
frequencies
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where ν is the atomic transition frequency and V is the ion velocity.  From Eqs. (12) and (19), the
fractional shift due to motion along �ui  can be written as
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If 
&
EDC = 0 , ϕac = 0 and Tx = 1.7 mK, motion in the x-direction for a 199Hg+ ion contributes

-8 × 10-19 to the fractional second-order Doppler shift.  However, if ϕac = 1°, the fractional shift
becomes -9 × 10-15.  A 1 V ⋅ mm-1 field along the x-axis further increases the magnitude of the
fractional shift by 3 × 10-14.

The ac field that causes micromotion can also cause significant ac Stark shifts.  The Stark
shift due to the field the ion experiences is approximately
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electric field at the ion position. To lowest order in qi and ai, substituting Eq. (18) into Eq. (17)
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The second term is much greater than the square of 
&
E uDC i⋅ �  when |ai| « qi

2 « 1, so a small uniform
static field can induce a large Stark shift.

Stark shifts have been measured for the three Zeeman components of the 1.76 µm
62S1/2 → 52D5/2 transition in a single 138Ba+ ion [16].  The ion, cooled to about 1 mK, was confined
in a spherical Paul trap in which Ω = 2π ⋅ 26 MHz and ωz = 2π ⋅ 2.6 MHz.  A static electric field
was applied along the z-direction, and the shift of the transition frequency was measured as a
function of the field strength.  The measured values of σS were on the order of +10-6 Hz / (V/m)2

for each Zeeman component.   With these values of σS, the fractional Stark shift of the transition
frequency in the absence of uniform static electric fields was calculated to be 10-17.  A 5 mV
potential across the 0.3 mm diameter trap was predicted to cause a fractional shift of +1.2 × 10-15.

We have estimated the static Stark shift constant σS of the 282 nm 199Hg+ 5d106s 2S1/2

→ 5d96s2 2D5/2 electric quadrupole transition.  First, we calculate the matrix elements between the
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5d106s 2S1/2  ground state and the closest few states with the 5d106p configuration. This gives
αS = 2.1 × 10-24 cm3 for the polarizability of the ground state.  To estimate the polarizability of the
5d96s2 2D5/2 state, we consider transitions from the 5d96s2 2D5/2 state to the various states with the
configuration 5d9 6s 6p.  In the 5d9 6s 6p states, one of the two 6s electrons of the 2D5/2 state has
been excited to a 6p state.  That transition is qualitatively similar to exciting the single 6s electron
of the 5d106s 2S1/2 state to one of the 5d106p states.  Hence we assume that the matrix elements
between the 5d96s2 states and the 5d9

5/2 6s 6p states are similar to those between the 5d106s and
5d106p states.  The center of gravity of the 5d96s2 → 5d9

5/2 6s 6p transitions is about 208 nm.
This wavelength is not much longer than that of the first 5d106s → 5d106p transition at 194 nm.
Thus we expect that the polarizability αD of the 2D5/2 state is on the order of that of the ground
state.  Both states will be shifted down in energy by a static electric field, since all electric dipole
transitions connect them only to higher-lying states.  For the electric quadrupole transition, then,
we estimate that |σS| ≤ 1.0 × 10-6 Hz / (V/m)2.

This number lets us estimate the magnitude of the Stark shift for the 282 nm quadrupole
transition, using the parameters stated earlier.  If 

&

EDC = 0 , ϕac = 0, and the ion is cooled to the
Doppler limit in the x-direction, then the Stark shift of the 282 nm quadrupole transition due to
the electric field in the x-direction is |∆νS/ν|  ≤ 1.1 × 10-18.  A 1 V ⋅ mm-1  static field along the x-
direction causes a fractional Stark shift of |∆νS/ν|  ≤ 9 × 10-14.  If ϕac = 1°, this shift increases by
about  3 × 10-14.

Under favorable circumstances, the second-order Doppler and ac Stark shifts from excess
micromotion can be made to cancel.   If we consider only the effects of excess micromotion, we
have
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where 
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Vµ  is the velocity of the excess micromotion.  From Eq. (31), the ac Stark shift can be

written as
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Using Eq. (29), we can write the sum of the fractional second-order Doppler and ac Stark shifts
as
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For σS > 0, it might be possible to make the factor in brackets equal to 0.  As an example, for the
282 nm quadrupole transition in 199Hg+, if σS = 1 × 10-6 Hz / (V/m) 2, this factor is 0 for
Ω ≅ 2π ⋅ 8.4 MHz, close to the condition of the experiment reported in Section 5.

Finally, if several ions are stored in the same trap, excess micromotion can also increase
the magnitude of the secular motion.  The micromotion and secular motion of a single ion in a
Paul trap are highly decoupled, so excess micromotion will typically not increase the secular
motion.  However, if two or more ions are in the trap, the energy of the excess micromotion of
any ion can be parametrically coupled into the energy of the secular motion of the other ions [7,
14, 15, 17].  Since the micromotion is driven by the ac field, this heating is continuous and can limit
the lowest temperature attainable by cooling methods.  In the absence of cooling mechanisms, the
ions can gain enough energy to leave the trap.
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4. Detection of Excess Micromotion

Different techniques can be used to detect excess micromotion caused by a uniform static
field 

&

EDC  or phase difference ϕac between the trap electrode potentials.  In the first of these
methods, which is sensitive to excess micromotion caused by static fields, the time-averaged ion
position is monitored as the pseudopotential is raised and lowered [18].  If an imaging system is
used to view the ion as it is translated, then the ion position in the plane of observation can be
determined to the resolution limit of the optics.  Translations can also be detected in any direction
by monitoring the distance that a focused laser beam must be translated to maintain the maximum
photon scattering rate from the ions.  Let ∆u0i be the measured translation along �ui  when the

secular frequency is reduced from ωi 1 to ωi 2.  From Eqs. (16) and (30) (taking |ai| « qi
2 « 1), when

the secular frequency is ωi 1, the fractional second-order Doppler shift due to excess micromotion
along �ui is
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From Eqs. (16) and (32), the Stark shift due to the ac field along �ui is

 ( )∆
∆ Ω

ν σ
ω

ω ω
ω

S i S

i

i i

i im u

Q
≅

−











2
2

1
2

2
2

0 1

2

. (37)

As an example of the sizes of the detectable shifts, we assume the same parameters for the trap
and ion (199Hg+)as above.  We assume also that the ion position changes by |∆u0x| = 25 µm in the
x-direction when the pseudopotential is lowered to ωx = 2π ⋅ 0.5 MHz.  Then the second-order
Doppler shift when ωx = 2π ⋅ 1.0 MHz is ∆νD2/ν ≅ -1.5 × 10-14, and the Stark shift of the electric
quadrupole transition is |∆νS/ν| ≤ 4 × 10-14.

This technique can also be used by modulating the pseudopotential (by modulating V0 at
frequency ωmod « Ω) while the ion is located in the waist of a laser beam tuned to a cycling
transition (for example, the Doppler-cooling transition).  We assume that |ai| « qi

2 « 1 and that the
modulation is adiabatic, so while the magnitude of the excess micromotion changes, the
magnitude of the thermal motion is approximately constant.  Suppose that the laser beam has a
transverse Gaussian intensity profile

( )I r I r w( ) exp /= −0
2

0
22 , (38)

and that the ion lies on the half-intensity radius of the beam

r r w= ≡0 0

2

2

ln
. (39)

The secular frequency is given by

( )′ = + +ω ω ω ω ϕi i i t∆ cos mod mod , (40)

where

∆ ∆ ∆ω
ω

ω
ω

x

x

y

y

V

V
= ≅ 0

0

, (41)

ϕmod is the phase of the modulation, and ∆V0 is the modulation of the trap rf amplitude.  Here, for
simplicity, we assume that ∆ω i / ω i « 1.  The ion position averaged over a cycle of the rf potential
varies as
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( )′ = − +u u u ti i i0 0 0∆ cos mod modω ϕ , (42)

 where

∆
∆

u
u V

Vi
i

0
0 0

0

2
=     (i = x, y) . (43)

We define 
&

r r r= �  as the vector from the laser beam axis to the ion position (such that �r k⋅ =
&

0).
If ∆&

u r0 ⋅ �  « w0, then the laser intensity in the rest frame of the ion is

( )

( )

I I
u r t

w

I I t

≅ −
⋅ +











≡ − +

0
0

0

1
2 0

1

2

2 2ln � cos

cos .

mod mod

mod mod

∆

∆

& ω ϕ

ω ϕ
(44)

In the low intensity limit, the detected fluorescence signal is Rd = ½ Rmax - ∆Rd cos(ωmod t + ϕmod).
Here, ∆Rd is the amplitude of the signal synchronous with the pseudopotential modulation,  and
Rmax is the signal when the ion is at the center of the laser beam profile.  We can write

∆ ∆ ∆

∆

R

R

I

I

u r

w

u

w

d

r

max

ln
�

ln cos ,

= ≅
⋅

=

0

0

0

0

0

2 2

2 2

&

θµ

(45)

where θµr is the angle between ∆&
u0 and �r .  From the measured value of ∆Rd/Rmax and for a known

value of ∆V0/V0, we can determine u0i from Eqs. (43) and (45).  From Eqs. (16), (30), and (32),
we can then determine the corresponding values of ∆νD/ν and <Ei

2>, analogous to Eqs. (36) and
(37).  Generally, cos θµr is not known, but it can be maximized and the direction of ∆&

u can be
determined by moving the laser beam appropriately.

The main disadvantage to the above techniques is that they are not sensitive to excess
micromotion caused by a phase shift ϕac between the potentials applied to the trap electrodes.  If
u0x = 0 but ϕac ≠ 0, the average ion position will not change as the pseudopotential is raised and
lowered, as indicated in Eq. (18).  Techniques that sense the magnitude of the first-order Doppler
shift caused by the excess micromotion eliminate this problem.

We will assume that we measure the effects of the first-order Doppler shift on an optical
transition with natural width γ.   Previously, first-order Doppler shifts of microwave spectra have
been used to determine the temperature of the secular motion of trapped ions [19, 20].  We first
take the case in which Ω » γ.  The micromotion can be monitored by measuring the scattering rate
R0 when the laser is tuned to the carrier (ωlaser - ωatom = 0) and R1 when tuned to the first sideband
(ωlaser - ωatom = ± Ω) [21] (see Fig. 2(b)).  From Eq. (28), in the low intensity limit,

R

R

J

J
1

0

1
2

0
2

=
( )

( )

β
β

 , (46)

where β is defined in Eq. (22).  For β « 1,

( )R

R
1

0

1
2

2
≅ β , (47)

and since

β µ= ⋅ ′ =
⋅& &

& &

k u
k V

Ω
, (48)
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the fractional second-order Doppler shift can be written as

∆ Ων
ν θµ

D

kc k

R

R
2

2

1

0

≅ −








cos

, (49)

where θµk is the angle between �k  and the direction of the excess micromotion.  From Eqs. (34),
(47) and (48), the corresponding Stark shift can be written

∆
Ω

ν σ
θµ

S S
k

m

Q k

R

R
≅









2

2
2

1

0cos
. (50)

As an example, we assume that we probe the sidebands on the 282 nm transition in 199Hg+ in a
trap with the parameters listed previously.  If θµk = 0 and R1/R0 = 0.1, then the second-order
Doppler shift is ∆νD2/ν ≅ -9 × 10-18.  The corresponding Stark shift is |∆νS/ν| ≤ 2.5 × 10-18.

In the limit Ω « γ, a sensitive method to detect excess micromotion monitors the
modulation of the ion’s fluorescence signal due to the first-order Doppler shift [22, 23, 24].   We
will call this the “cross-correlation” technique because the modulation is correlated to the ac
potentials applied to the trap electrodes.  For simplicity, we assume that the amplitude of the first-
order Doppler shift is much less than the linewidth γ.  From Eqs. (15) and (18), the velocity due
to excess micromotion is given by

( ) ( ) ( )
&

V t u q t u q R t xi
i x y

i i x acµ αϕ= − −
=
∑1

2 0
1
4

,

sin � cos �Ω Ω Ω Ω . (51)

In the frame of an ion undergoing excess micromotion, the frequency of the laser is Doppler

shifted by − ⋅
& &
k Vµ  = β Ω sin(Ωt + δ), where β and δ are defined in Eqs. (22), (23), and (24).  In

the low intensity limit, the detected fluorescence rate is thus

( )
( ) ( )( )

R R
t

d

atom laser

=
+ − − +

max
sin

1
2

2

1
2

2 2

γ

γ ω ω β δΩ Ω
. (52)

We take ωatom - ωlaser = γ/2, which is a natural choice since this minimizes the temperature of the
Doppler-cooled ions and because it maximizes the cross-correlation signal.   If β Ω « γ, then

( ) ( )R

R

t R t

R
d d

max max

sin sin
≈ +

+
≡ +

+1

2

1

2

β δ
γ

δΩ Ω ∆ Ω
. (53)

Using Eq. (48), we can write the fractional second-order Doppler shift as

∆ ∆ν
ν

γ
θµ

D

k

d

ck

R

R
2

2

1

4
≈ −









cos max

. (54)

where, again, θµk is the angle between �k  and the direction of the excess micromotion.  With
Eqs. (34) and (48), the corresponding Stark shift can be written as

∆
Ω ∆

ν σ
γ

θµ
S S

k

dm

Qk

R

R
≅











1

2

2

cos max

. (55)

As an example, we consider 199Hg+ ions, using the previously stated trap parameters, and
γ = 2π ⋅ 70 MHz for the 194 nm Doppler-cooling transition.  If θµk = 0 and ∆Rd /Rmax = 0.1, then
the second-order Doppler shift is ∆νD2/ν  ≅ -5 × 10-18, and the Stark shift of the electric
quadrupole transition is |∆νS/ν| ≤ 1.5 × 10-17.

As opposed to the first method for sensing micromotion, the cross-correlation technique
can determine whether the ac potential applied to electrode 2 is out of phase with that applied to
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electrode 4 (see Fig. 1).  If a deliberately applied static electric field moves the ion to different
positions in the trap, the phase of the fluorescence modulation at frequency Ω depends on ϕac.
The atomic velocity is 90° out of phase with the force due to the ac electric field.  Thus if ϕac = 0,
the phase of the cross-correlation signal jumps by 180° as the average position of the ion crosses
the nodal line of the ac field.  Also, when the ion is on the nodal line, the signal at frequency Ω
vanishes.  However, if ϕac ≠ 0, from Eq. (18), the phase of micromotion in the y-direction
continuously varies as the average ion position is changed.  Furthermore, the amplitude of the
micromotion is never zero.  This behavior can be used to determine the relative contributions of
stray static electric fields and electrode potential phase shifts to the excess micromotion.  In
general, the effects of 

&

EDC  can be eliminated by purposely applying a static field 
& &

E Eapplied DC= − ;

ϕac can be made zero by loading electrodes 2 and 4 with the appropriate reactances.
Still, avoidable effects may confuse the interpretation of the cross-correlation signal.  For

example, as the ion moves back and forth across a nonuniform laser beam intensity profile, the

fluorescence is modulated at frequency Ω, even if 
& &

k V⋅ =µ 0.  This modulation is minimized when

the ion is at the center of the (symmetric) laser beam, regardless of its average distance from the
ac field’s nodal position.  However, this condition can be detected–the phase of this fluorescence
modulation is sensitive to lateral translations of the laser beam, which is not true if the
fluorescence modulation is due to the first-order Doppler shift.

It is also important to avoid tuning the laser frequency too close to the atomic frequency.
In this case, the fluorescence modulation due to the first-order Doppler shift (Eq. (52)) is
deceptively small.  This situation, though, is easily checked by detuning the laser frequency farther
from atomic resonance to see if the fluorescence modulation amplitude increases.

Finally, to determine that the micromotion is zero in all three dimensions, three laser
beams must interact with the ion.  These beams must not be coplanar, to ensure sensitivity to
micromotion in every direction.  Unless the three beams are orthogonal, this technique is not
equally sensitive to ion motion in all directions, as illustrated below.
5. Experimental Demonstration of the Fluorescence Modulation Technique

Figure 3 illustrates the experimental configuration we use to detect and minimize
micromotion of a string of ions in our linear Paul trap, using the cross-correlation technique.  In
this trap, ϕac = 0 within the experimental resolution.  Typically, about ten ions, whose extent is
small compared to their distance from the electrodes,  are stored in the trap.  In this case the
fluorescence modulation signals from each ion add in phase.  Laser beams 1 and 2 propagate

along sin
� �

cos �θ θ
x y

z
−



2
# , where θ = 20°.  Beam 3 propagates along ( )� � /x y+ 2 .  The three

beams intersect at the ions’ position.  Static electric potentials are applied to four biasing rods
running parallel to the trap electrodes, creating an additional field that is nearly uniform at the site
of the ions.  When the potentials on the four rods are appropriately summed, the electric fields

along the ( )� � /x y± 2 directions can be separately controlled.

We detect the fluorescence modulation with a START-STOP time-to-amplitude converter
(TAC) [25].   The TAC generates an analog pulse having a height proportional to the time delay
between a START and a STOP pulse.  A fluorescence photon, detected by a photomultiplier tube,
generates the START pulse.  An amplifier-discriminator generates a STOP pulse for each
negative-going zero-crossing of the trap ac potential.  The counting rate of fluorescence photons
is typically much less than the frequency of the ac field.  Also, the time between photon detections
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is much greater than the time the TAC takes to reset for the next START pulse.  Thus, each
detected photon results in an output from the TAC, proportional to the time to the next STOP
pulse.  This process would be inefficient if the START and STOP events were reversed, because
not every START pulse would be followed by a STOP pulse within a period of the ac electric
field.  Finally, the height of the output pulse from the TAC is measured by a triggered analog-to-
digital converter and binned according to height by a computer, which acts as a multichannel
analyzer [25].  A spectrum of the fluorescence intensity as a function of the phase of the ac electric
field is typically built up within a few seconds.

The fluorescence modulation signals due to beams 1, 2, and 3 are separately measured,
then the static fields are adjusted to minimize the fluorescence modulation for each beam.  Since
the micromotion is directed along the ac electric field, in general, the direction of the micromotion
is not the direction of the ion displacement from the trap axis.  For example, in the trap of Figs.  1

and 3, micromotion along ( � �) /x y+ 2  indicates that the ions are displaced along ( � �) /x y− 2 ,

and vice versa.  To begin, we compare the cross-correlation signal ∆Rd /Rmax with only beam 1
present to ∆Rd /Rmax with only beam 2 present.  The signals due to the two beams will differ if the
ions experience micromotion along �z .  Such axial micromotion is due to the endcaps, which
produce a (small) component of the ac electric field along �z .  From symmetry, this axial
micromotion should be minimized when the ions are equidistant from the endcaps.  A differential
potential is applied between the two endcaps to translate the ions along the trap axis until the

signals from beams 1 and 2 are nearly equal.  Next, the static field along ( � �) /x y+ 2  is adjusted

to move the ions to a position at which ∆Rd /Rmax from beams 1 and 2 are each minimized.
Typically, we must iterate these adjustments before ∆Rd /Rmax ≈ 0 for both beams 1 and 2.  Finally,

a static field along ( � �) /x y− 2  is applied to null the amplitude of the signal from beam 3.  After
this we check that the signals from beams 1 and 2 have remained negligible.  If they have
increased, we repeat the entire process until the micromotion is eliminated in all three dimensions.

Figure 4 shows some fluorescence modulation signals collected with the setup shown in
Fig. 3, when only beam 1 is present.   The laser is tuned near the 194 nm
5d106s 2S1/2 → 5d106p 2P1/2 transition.  Here, Ω = 2π ⋅ 8.6 MHz, ωx ≈ ωy ≈ 2π ⋅ 65 kHz, and
ωlaser − ωatom ≅ -γ/2.  The micromotion has been nulled in all three dimensions as just described.

Next, only beam 1 is used as the ions are translated along ( � �) /x y+ 2  to induce excess

micromotion along ( � �) /x y− 2 .  Figure 4(a) shows the cross-correlation signal when the ions

are located near the trap axis.  The fit to the data gives ∆Rd /Rmax = 0.043 ± 0.014, corresponding
to a fractional second-order Doppler shift of ∆νD2/ν ≅ -(9 ± 3) × 10-19 due to motion along the
propagation direction of beam 1.  Figures 4(b) and 4(c) are the fluorescence modulation signals

when the ions are deliberately shifted by approximately ±6.7 µm along ( � �) /x y+ 2 .  For these

signals, |∆Rd /Rmax| ≈ 0.3, corresponding to a second-order Doppler shift of ∆νD2/ν ≅ -5 × 10-17

due to motion along the propagation direction of beam 1.  The Stark shift due to the ac field along
the propagation direction of beam 1 is |∆νS/ν| ≤ 1.0 × 10-16.

The fluorescence modulation signals from all three laser beams can be reduced to the level
shown in Fig. 4(a).  We consider the case in which the signals from beams 1 and 2 have the same
sign.  Then from Eq. (54), the fractional second-order Doppler shifts due to excess micromotion

is -(0 ± 0.2) × 10-18 along �z , -(8 ± 2) ×10-18 along ( � �) /x y− 2 , and -(0.9  ± 0.3) × 10-18

along( � �) /x y+ 2 .  These values add to give a total shift of ∆νD2/ν ≅ -(9 ±  2) × 10-18.  Similarly,
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from Eq. (55), these signals indicate a total Stark shift of |∆νS/ν|  ≤ (1.9 ±  0.4) × 10-17.  These
small shifts illustrate this method’s effectiveness in reducing micromotion.

To conclude, the micromotion of ions in a Paul trap has several related adverse effects.  In
high-resolution spectroscopy, the most significant are the second-order Doppler shift and a
possible Stark shift due to the ac electric fields.  Because these shifts can be substantial, it is
critical that micromotion be eliminated in all three dimensions.  Table 1 lists the methods
discussed in this paper, and the corresponding formulas for determining the second-order Doppler
shift and the Stark shift from the relevant signals.  The first method monitors the spatial motion of
the ions as the pseudopotential is varied, whereas the last two methods monitor the effects of
first-order Doppler shift on the atomic line shape.  The spatial-monitoring techniques are
insensitive to micromotion caused by a phase shift between the ac potentials applied to the trap
electrodes.  Apart from this, which technique is most sensitive to micromotion depends on the
parameters of the trap, laser beams, and atomic transition.

This work was supported by ONR.  We thank Dietrich Leibfried, Don Sullivan, Brent
Young, and Matt Young for helpful comments on the manuscript.
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Table 1:  Summary of the sensitivities of various techniques to the fractional second-order
Doppler shift and the Stark shift.  Formulas are approximations assuming |ai| « qi

2 « 1 (i = x, y).
The various parameters are explained in the text.

Figure 1:  Linear Paul trap (a) side view and (b) axial view.  A string of trapped ions is
shown schematically in (a).  For clarity, the endcaps are not shown in (b).   The trap electrodes
are labeled 1, 2, 3, and 4.  The trap axis defines the z-axis, and the origin of the z-axis is centered
between the two endcaps.

Figure 2: Effect of micromotion on the spectrum of Pe (excited state population).  We plot

( )[ ]′ = ℘P P Ee e !γ 2 0

2

 for various values of β.  For both graphs, we assume that the ion is

driven below the saturation limit.  (a) Ω/γ = 0.1.  For β = 10, heating occurs in the regions
-0.6 < (ωlaser - ωatom)/γ < 0 and (ωlaser - ωatom)/γ > 0.6 .  (b) Ω/γ = 10.  For β > 0, heating can occur
when the laser frequency is tuned near, but above the center of, any of the sideband frequencies.

Figure 3:  Experimental setup to observe and minimize micromotion using the cross-
correlation technique.  The ions are at the intersection of the three laser beams.  (a) Top view of
the section of the trap in which the ions are located.  Beam 3 is not shown.  (b) View along the
trap axis.  For clarity, the origin of the coordinate system has been translated.

Figure 4:  Experimental fluorescence modulation signals for beam 1 of Fig. 3, using eight
ions in the linear trap (points) and fit (solid line).  Displacement of the ions from the trap axis

along ( )� � /x y+ 2  is (a) 0.9 ± 0.3 µm,  (b) 6.7 ± 0.4 µm and (c) -6.7 ± 0.4 µm
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